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Discrete versus Continuous-Time Random Walks 
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The results obtained on the basis of discrete and continuous-time random walk 
models on a finite chain are compared with one another in problems such as 
longitudinal dispersion and the spectrum of a random oscillator. In these 
applications, discrete and continuous-time models cannot be used inter- 
changeably. 
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1. I N T R O D U C T I O N  

The theory of random walks has a long history, starting with the 
pioneering work of Einstein on Brownian motion. (~) Different descriptions 
of Brownian motion have been put forward, depending on whether time 
and/or space are treated as discrete or continuous variables. (2'3) This choice 
is often made on the basis of convenience, e.g., discrete models are concep- 
tually simpler, possibly more transparent, and more suitable for numerical 
calculation, whereas the analytic results for continuous models are often 
considerably simpler. 

In this paper we discuss the differences that may show up (and prevail, 
even in the long-time limit) between discrete and continuous-time random 
walks on a finite chain in applications such as longitudinal dispersion and 
the spectrum of a random oscillator. In these applications, both discrete 
and continuous-time models have been used. These models do not give the 
same results because fluctuations play an important if not dominant role 
in the above examples. The purpose of this paper is to calculate these 
differences in an explicit way. To do so, we consider a discrete-time 
random walk that encompasses bo th  the case of fixed residence times and 
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exponentially distributed ones as limiting cases, namely one in which the 
residence time between jumps is a binomial distribution. On this basis the 
differences between discrete and continuous time can be easily discussed. 
Most of the results for the continuous-time case have been given in 
previous papers ~4-6) and are recovered in the appropriate limit. 

The discussion of a discrete-time model is, apart from its academic 
interest and relevance to numerical experiments, also of direct importance 
in applications where the "time variable" is essentially discrete. An 
application of this type from polymer physics illustrates this point. 

The paper is organized as follows. The general mathematical setup is 
presented in Section 2, while the specific applications, dispersion and the 
random oscillator, are discussed in Sections 3 and 4, respectively. All these 
results are valid asymptotically for large times. Some results valid for all 
time are derived in Section 5 and an application to polymer physics is 
given. 

2. PRESENTATION OF THE PROBLEM 

We will formulate the problem in the context of the so-called 
"generalized Taylor dispersion ''~7) or "composite stochastic processes. ''~8) 
We consider a system with N internal states i, i =  1,..., N, and an external 
real coordinate x. The time evolution of the external variable is, for 
simplicity, taken to be deterministic, but monitored by the internal state: 

c~,x=ui  (1) 

ui is the rate of change of x while in the state i. At the same time and 
independently, the system performs a random walk over its internal states. 
As far as the modeling of these internal states is concerned, we will restrict 
ourselves to a linear set of N states i, i = 1,..., N, between which nearest 
neighbor transitions occur. The system stays a fixed time step A t in a site i, 
after which it jumps with probabilities ~ to the sites i + 1, or it stays for 
another time step At in the same site with probability 

s ~  1 - ~ +  - ~ 7  (2) 

The residence time per visit of a state is then a binomial probability 
distribution. The cumulative probability is a step function of the form 

P(tresid . . . .  > n  A t ) =  [1 -- (k + +k~- )  A t]"  (3) 

where we introduced the transition rates k + = ~ / A t .  The average residence 
time in site i is found to be (k + + k 7 )-~. In the limit At--* O, an exponen- 
tial residence time distribution is recovered. 
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The equation of evolution for the probability P(x, i, n) to be at the 
position x in site i at the end of the nth time step (i.e., at time t=nAt )  
reads 

P(x, i, n)= P ( x - u i A t ,  i, n -  1)(1 - ~ +  - ~ i )  

+ P ( x - u i A t ,  i -  1, n-- 1) c~+1 

+ P(x -usA t ,  i+ 1, n -  1) ~,-+1 (4) 

The particular case ~0 = 1 - c~ + - ~ -  = 0 covers the situation of the usual 
discrete-time random walk in which the system always spends a fixed time 
At between two jumps. On the other hand, a continuous-time random 
walk, with exponential residence times between the jumps, is obtained in 
the following limit: 

n--,oe, A t~O,  ~+ ~ 0  with nAt= t ,  c ~ / A t = k  + fixed (5) 

In this limit, the evolution equation (4) becomes 

0 
OtP(x, i, t )=  --~xxUsP(x, i, t) + k+lP(x ,  i -  1, t) 

+ k i ~ l P ( x , i +  l , t ) - (k i+ + k ~ ) P ( x , i , t )  (6) 

Let us now discuss the quantities of interest in the physical 
applications. In the dispersion problem, we are interested in the reduced 
probability 

N 

P(x, n)= ~ P(x, i, n) (7) 
S = l  

It will be shown that P(x, n) is asymptotically (i.e., in the long-time, large-n 
limit) Gaussian. The two important quantities to be evaluated are then the 
average value (x( t ) )  and the dispersion ( I x ( t ) -  (x( t ) )J  2) = (6x2(t)). 

In the random oscillator problem, the x variable plays the role of the 
phase of the oscillator. Each internal state i corresponds to a site with 
different rotation frequency us. The oscillators are started in phase at the 
initial time, say x ( t=0) -=0 .  Since each oscillator performs another 
realization of the random walk over the internal states, this phase 
coherence gradually gets lost. This depolarization is described by the 
following average(9"1~ 

(~(t) = (exp[ix(t)]) (8) 

Again, this average can be evaluated in the long-time limit. This limit 
covers effectively a large, if not the entire time domain in the case of fast 
modulation. 

822/50/5-6-16 
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The solution to the above problems in the continuous-time case has 
been given for reflecting boundary conditions in Ref. 4 (dispersion) and 
Ref. 5 (random oscillator). Periodic boundary conditions are discussed in 
Ref. 6. All these results will be recovered in the continuous-time limit. 

3. L O N G I T U D I N A L  D I S P E R S I O N  

In longitudinal dispersion the velocity of a particle is determined by its 
internal state. As the particle wanders over these states, it loses memory of 
its previous visits, hence of its previous velocity. Consequently, the velocity 
correlation function decays to zero and, on a sufficiently long time scale, 
the particle's motion in the x direction can be thought of as the result of a 
large number of uncorrelated displacements. In view of the central limit 
theorem, it is thus no surprise to find that x is asymptotically a Gaussian 
random variable. The proof of the Gaussian nature of x for large time is 
along lines similar to that for the continuous-time case ~4) and will be 
omitted here. The first two moments ( x )  and (Sx 2) are most easily 
expressed in terms of the steady state distributions p~t. These are the 
steady-state probabilities to find a particle in state i. For simplicity, we will 
assume that the latter obey the detailed balance condition: 

k/-r st  __ Pi  -- k i+  1 st  Pi+I (9) 

where the transition rates k + are defined in (5). 
Note that this condition is automatically satisfied in the case of 

reflecting boundary conditions. In general, it implies the following relation 
between forward and backward rates~11): 

N N 

1-I k+ = 1-I k7 (10) 
i = l  i - - 1  

The explicit expression for the steady-state probabilities then reads 

p~t = Zk~- . . .  k +_ lk i+  1"'" k~ 

with Z a normalization constant. 
Let us now state the results. We have (cf. Appendix) 

(11) 

lim (x (n ) )  
~ - ~  na t  

( 6x2(n) ) 
lim 

n ~  2n At 
= K  

(12) 
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with 

N 
(t-= ~ l, t ip~ t (14) 

i= l  

and 

K --- ~'rN--1 Z ~ l  { [ Z ; = l  (Ui --  ~l) p~t __ Z j  ~ =1 (% -- /'t) p ; t ]  2/kr+ p ~ k  + p~} 
2 N 1(1 /k~-  st Zq = pq ) 

At 
--u~)p, (15) + _ 2  (~2 2 ~, 

i=1 

Equation (15) is one of the central results of this paper. The effective 
dispersion coefficient is the sum of two terms. The first term is identical to 
the expression for the dispersion coefficient in the continuous-time case. 
The second term is a negative contribution, which is due to the discrete 
nature of the time process. Dispersion is thus smaller in a discrete-time 
random walk then in the continuous-time case. Note that this contribution 
persists even though we are considering here asymptotic time properties. 

As was already discussed in detail in Ref. 6, the case of a reflecting 
boundary (at the states i =  1 and i =  N) can be obtained by letting k (  and 
k + go to zero with constant ratio: 

ki- st + st= Pl/kN P~V 1 (16) 

In this limit, we obtain ~6) 

N--1 [- r 

r= i k +  pSrt 
s t  

+ 2 e=l (~i2-u~)pi 

(reflecting boundary conditions) (17) 

In order to evaluate the importance of the term proportional to At, we 
consider the simple N =  2 model that has been proposed as a model for 
chromatography. (12) For  

k2 kl p i t = _ _  p ~ t = _ _  (18) 
kl  + k2 '  k l  + k2 

we obtain from (17) 

K= (k, + ~)~ 1_--~(k,+k~),~t (19) 
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We conclude that the effect of time discreteness is small when A t is smaller 
then the typical time (kl +k2)  -1 of the transitions between the states. On 
the other hand, the dispersion becomes zero for e ~ = k ~ / A t = l  and 
~2 = k2/At  = 1. 

An alternative way for writing the results (15) is as follows: 

with 

N N 
K =  E ~, M~ju,uj (20) 

i=1  j = l  

[ ~N rE-- 1 ~'~rA,,.k = s + 1 El r  = s + l ( p , S t  _c3,k)(pjt_(~j,)pfp~t] 
Mo.= st + st 

r ls=1 k + p , k ,  P, 

x +- si 
q 1 kq pq 

At  ~t st 6 ~t, 
+-~-(Pi  P: - 0P) ) (21) 

The advantage of this way of writing K becomes clear by noticing that [for 
x(0)=0] 

N 
x(n )=  ~ ~i(t)ui (22) 

i=1  

where ri(t) is the accumulated resdenee time in state i. From (22), we 
conclude that 

N 
( x ( n ) )  = ~ (z~(t))u, (23) 

i=1  

and 

N N 
( 6 x 2 ( n ) )  = ~ ~ (6zi(t) 6zj(t)) u~uj (24) 

i=1  j = l  

By comparison with (14) and (21) it follows that 

lim ( z i ( t ) )  st (25) 
n~o~ n a t  --Pi 

lim (6vi(t) &j(t)) 
n ~ o~ 2n At = Mij (26) 
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Note also that the property Z~] ~i~'i = 0 implies that 

N 
M ~ = 0  (27) 

i=1 
For the particular case k { - k and p~t = 1/N we have 

1 V N  2 - 1 ] At MiJ=6--~----~+3(i-j)2--3N(i--j[ ~ + ~-~  (1 - N50. ) (28) 

For reflecting boundary conditions (k + -= k except for ki~ = k~ = 0), one 
finds 

1 
M~j = 6-- ~ [ ( S +  1)(2N+ 1) + 3(i 2 q_j2)_ 3(N+ 1 ) ( i + j ) -  3N li-jl] 

At 1 +~--~ (-N6o) (29) 

These results can be used to discuss the random oscillator problem. 

4. T H E  R A N D O M  O S C I L L A T O R  

In order to evaluate the depolarization function (8), we rewrite it in 
terms of the random variables rk(t) introduced in the previous section, as 
foliowsI13/: 

( I ]) ~b(t)-- exp i ~ %(t) u~ (30) 
k=l 

Furthermore, we will assume, not unreaistically, (13) that the frequencies uk 
are independent Gaussian random variables with average value taken to be 
zero and dispersion 0)~: 

0)2 ,~Kr (31) (uku, )~= ,~vk,, 

The average brackets in (30) thus have to be understood as a double 
average, one over the paths of the random walk of the oscillator, denoted 
by ( ' ) e ,  and another over the frequencies, ( ' )F .  The average over the 
frequencies can be performed exactly, and we obtain 

~)(t)=((explie~= re(t)ue])F) p 

exp 1 N 
= [ --~ 0)~ 51 "~(/)])p (32) 
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A heuristic argument that allows one to calculate the average over the 
paths runs as follows. The cumulated residence time z~(t) is expected to 
follow the law of large numbers, i.e., we expect that these random variables 
are equal to their average value (~k(t)> plus fluctuations that are com- 
paratively small in the long-time limit. For the case that all sites are on the 
average visited equally often (i.e., all the rates k + are equal), we thus 
expect 

~k(t) = t/N+ fluctuations of order xf7 (33) 

A mean field type of argument is then to boldly replace rk in (32) by its 
average value. We thus obtain 

~b(t) ~ exp( - O~2Ft2/2N) (34) 

To go beyond the mean field argument given above, we will now per- 
form the double average in the inverse order. Since x(t) is asymptotically 
Gaussian, we obtain 

(~( t) = ((exp[ ix( t) ] >P>F 

1 ~(exp[i(x(t)>e--~ (6x2(t)>e]> F 

~(exp[ik~luepSktt--Kt]> F (35) 

The dispersion coefficient is given by (20)-(21). The average over the 
frequencies can be performed if we restrict ourselves to the case of equal 
and symmetric jump rates k~ =k .  This average over these Gaussian 
independent random variables uk can be performed following the same 
procedure as explained in Appendix B of Ref. 5. We obtain (periodic boun- 
dary conditions) 

(2kN']'N-')/2 N sinh N ~b C02Ft2) 
(~(t)~\-~Ft/ ~ exp ( - - - ~ - - /  (36) 

with 

s i n h - 2 ~ b = ~ ( 1  ~02F-~ At) (37) 
OFt \ 

In (35), we have used the asymptotic time properties for x(t), hence 
we expect that (36) will only be valid in the time regime t~>N2k -1. For 
those who worry about the exchange of the long-time limit with the 
average over the frequencies, we mention that the same result, though with 
a little more effort, can be obtained directly from (32). 

To illustrate the effect of a nonzero value for At, we plot q~(t) for 
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various values of k At in Fig. 1 for the case N =  16 and (.OF k 1 1. Our 
conclusion corroborates the results given in Ref. 13: the depolarization 
decay ~b(t) is faster for the continuous-time model. 

5. T IME D E P E N D E N C E  OF THE S E C O N D  M O M E N T  

In the case of a symmetric, translationally invariant walk (k + =k ,  
c( + =~,  and ~ = k  At), it is possible to go a little further and to obtain 
results for the moments ( x ( t ) J  and (6x2( t ) )  that are valid for all times. 
By the same token, it is possible to discuss the limit N--* oo, i.e., the case of 
infinite one-dimensional systems. 

Calculations similar to those of Ref. 6 for the continuous-time case 
lead to the following result for the dispersion [for the initial condition 
P(x, i, n = O)= 6(x) /N and for periodic boundary conditions]: 

(6x2(s) )  = ~ s" (6x2(n) )  
n ~ O  

N cosh ~ ( [ i - j ( - N / 2 )  At 1 Z 
- N (1 - s) 2 i.j= 1 k sinh/~ sinh(N/~/2) (uj - ~) 

At 2 s U 
+ N ( l - - s )  2 ~ (u2--u~) (38) 

i = l  100~- 
o o1\ 
0.80 ] ~..~.~ kAt=0.5 

:!..'L 

= 050- -~ , \  

04.0- 

o, o_ 

o.2o- .....:......... 

o 1o - ' ....... ,. 7 . . - . . - . . _ . . ~ ~  

0.00 
0.00 0150 I.'00 I.'50 2100 2150 3.'00 3'50 4.'.00 4.150 500 

kf 
Fig. 1. The correlation function ~b(t) for a random oscillator jumping  between N =  16 sites 
with modulat ion parameter  ogrk-I  = 1. Curves are for (top to bot tom) k At = 0.5, 0.1, and 0, 
illustrating the effect of a discrete-time model as compared to a continuous-time model 
(At = o). 
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with 

1--S 
cosh fl = 1 + -  (39) 

2sk A t 

Equations (38)-(39) allow one to discuss particular cases or limits. First, 
the long-time limit can be obtained from the following relationship: 

K =  lim ( 6 x 2 ( n ) )  = lim ( s -  1 )2(6~2(s ) )  (40) 
n ~  2 n A t  ,~1  2 A t  

and leads to the result (13) and (15) for k F = k. 
As a direct application of the result (38), we consider the following 

two-dimensional free rotation polymer model/14) The polymer consists of 
segments of fixed length b in the x y  plane. A given segment has the same 
orientation as a previous one with probability ~o or makes a fixed bond 
angle with it with probability 2e = 1 -  c~ ~ For  simplicity, we will suppose 
that this bond angle is equal to 2zt/N, with N >~ 2. The N allowed orien- 
tations of the segments thus make the following angles with the x axis: 

27~ 
0 , = 0 1 + ~ ( i - 1  ), i = l , . . . , N  (41) 

A segment oriented in the 0 i direction leads to the following increase of the 
x coordinate of the end-to-end distance: 

A x  = b cos 0 i = ui (42) 

This relation defines the value of ui. Since the variable n now refers to the 
number of segments of the polymer, and not to a time variable, we have set 
At = 1. We have thus mapped the polymer problem onto the discrete-time 
dispersion problem. The x component of the mean square end-to-end 
distance is then obtained by inserting (41) and (42) into (38) [note that 
~ = ~ =  ( 1 - ~ ~  In the polymer problem, the angle 01 of the orien- 
tation i = 1 with the x axis is itself a random variable with a uniform 
distribution in [0, 2rc[. By performing this second average, we finally 
obtain 

with 

( ( ,~2(s ) ) )  = ( ( ~ 2 ( s ) ) ) =  
1 b2s 1 + s C  

2 ( l - s )  2 1 - s C  
(43) 

C = ao + (1 - a ~ cos(2n/N) (44) 
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This result can be inverted to obtain ((x2(n)))  and the mean square end- 
to-end distance follows by invoking orientational isotropy. One finds 

( R 2 ( n ) )  --- ((x2(n))) + ( (y2(n) ) )  

----- 2 ((x2(n) )) 

I + C  1 - C  n 
=nb 2 - - -  2 b 2 C . - -  (45) 

1 - C ( 1  - C) 2 

This result is in agreement with the general result for the mean square end- 
to-end distance for polymer models with first-order correlation. (15) Finally, 
we consider a one-dimensional random walk with persistence. The random 
walker starts at the origin and moves with equal probability one step of 
length b to the right or left. At each subsequent step he has a probability p 
to take another step in the same direction as the previous one, and a 
probability q =  1 - p  to go in the other direction. This process can be 
modeled by a two-site discrete-time model, N = 2 ,  with velocities 
ul = - u 2  = b and probability ~o= p = 1 -  2~ or 2~ = 1 - p .  For  this case, 
we obtain again result (45) with C =  2 p - 1 ,  in agreement with the result 
first given by Taylor. (16) 

6. D ISCUSSION 

We have calculated asymptotic time properties of systems with an 
internal coordinate that undergoes a nearest neighbor random walk. If a 
discrete-time description with time step At is chosen, corrections arise when 
compared to the continuous-time case. We have given the long-time 
analytic form of these corrections for a few problems. These results are also 
of interest in the case of problems that are intrinsically of the discrete-time 
type, such as the polymer problem discussed in Section 5. 

APPENDIX  

We give a short outline of the derivation of Eqs. (12) and (13). Define 
the vectors p(n) and g(n) with components 

pi(n) = P(x,  i, n) dx (A1) 
o o  

gi(n) = xP(x ,  i, n) dx (A2) 

One assumes that p i (0)=p~ t, then for all n, pi(n)=p~t; furthermore, 
g;(O) = O. 
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Integration of the basic master equation (4) gives us the following 
equation for g(n): 

g(n) = Tg(n - 1 ) + b (A3) 

The matrix r has the following elements: 

T o . = o ~ l  (~i_l , j-~- (1 - ~ +  - a s  60+ ~i+ 1 6i+1, j (A4) 

while the components of the vector b are given by 

b i = u i p ~  t At (A5) 

The first two moments can be expressed in terms of the quantities gi(n) as 
follows. Obviously, one has 

(x(n)  ) = ~ gi(n) (A6) 
i 

The equation for the second moment (x2(n)) follows by multiplying (4) 
with x 2 and subsequent summation over i and integration over x. After 
some simple algebra, this equation can be rewritten as follows: 

( 6xZ(n ) ) - ( 6xZ(n -- 1)) = 2 At ~ ~ u~ T U gj(n - 1) 
i j 

- 2 ( n -  1)AtZ52 + A t Z ~  ui(ui-a)p~ t (A7) 
i 

The problem is thus reduced to solving (A3). By iteration, one finds 

n 1 

g(n)= ~ Vm'b (A8) 
m = 0  

Let X and Y be the right and left eigenvector matrices of T with eigenvalue 
matrix A. The steady-state solutions X~ = p~t correspond to the eigenvalue 
h i ~--- 1, and right and left eigenvectors are related by 

Y~i = X,~/P~ t (A9) 

We can then write the long-time limit of g(n) as 

s t  * - s t  g~(n) ~ p~ g~ +unp~ At (A10) 
n l a r g e  

with 

-- ~ ~ Y~ Y~' b, 
g*--t=1 r~2 l - -2r  

(All)  
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We conclude from (A6), (A7), and (A10) that for large values of n 

(x(n) ) ~ fm At (A12) 

2Kzlt,,~ 2AtZZu~Tug*p~+At2~u~(ue-ff)p~ t (a13) 
i j i 

Even though we do not know X, Y, and A explicitly, we can calculate g* as 
follows. By iteration of the eigenvalue equation (T'X)~,r=(X.A)~,r, one 
obtains 

i 

O~i-q-lXi+l,r--~?Xi, r =  E 
j = l  

(2r--1)Xj, r+~?Xl,r--a~vXu, r (A14) 

Using (All), (A14), detailed balance, and the orthonormality relation 
X. Y = 1, we can construct a recursion relation for g*'  

g.+ _g,=C~{ p]t(g*-g *) 1 ~ Ib - _~t ~ bt] 
-- st  ) l~J l=~,u ~ i + l p ~ t  1 Cgi+lPi+l j = l  1 

(A15) 

Iterating the last expression gives us g* in terms of g* and g*. We find g* 
by putting i = N, while g* follows from the property 

N 

(M r -- 1) ~ Xi, r = 0  
i = l  

which implies 

N 

oi ~*nst = 0 ~i (A16) 
i = l  

By the above procedure we 
Insertion into (A13) gives us the result (15) of the text. 

get explicit expressions for g~*, i=  1,..o, N. 
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